网站开发如何洽谈客户,河南建设厅特种工报考网站,做门户网站长沙社区赚钱吗,福州网站制作案例一、项目介绍
本项目基于YOLOv8目标检测算法开发了一套骑手佩戴头盔检测系统#xff0c;专注于识别摩托车骑乘场景中的三类关键目标#xff1a;头盔#xff08;helmet#xff09;、车牌#xff08;license_plate#xff09;和骑手#xff08;motorcyclist#xff09;。…一、项目介绍本项目基于YOLOv8目标检测算法开发了一套骑手佩戴头盔检测系统专注于识别摩托车骑乘场景中的三类关键目标头盔helmet、车牌license_plate和骑手motorcyclist。该系统可广泛应用于交通执法与安全监管场景辅助提升道路安全管理的智能化水平。YOLOv8的高精度与高效率架构确保了在复杂环境下仍能保持可靠的检测性能为违规行为识别和证据采集提供技术支持。数据集共包含1,803张图像按功能划分为训练集1,563张、验证集140张和测试集100张。数据内容覆盖多种光照条件、角度及遮挡场景标注包含上述三个类别注重头盔与骑手的关联性以及车牌的清晰度。数据规模虽有限但通过增强和优化标注策略仍可有效支撑模型学习局部特征与上下文关系为实际应用提供基础数据保障。目录一、项目介绍二、项目功能展示系统功能图片检测视频检测摄像头实时检测三、数据集介绍数据集概述数据集特点数据集配置文件数据集制作流程四、项目环境配置创建虚拟环境pycharm中配置anaconda安装所需要库五、模型训练训练代码训练结果六、核心代码编辑七、项目源码(视频简介内)基于深度学习YOLOv8的骑手佩戴头盔检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv8的骑手佩戴头盔检测系统YOLOv8YOLO数据集UI界面Python项目源码模型二、项目功能展示系统功能✅图片检测可对图片进行检测返回检测框及类别信息。✅视频检测支持视频文件输入检测视频中每一帧的情况。✅摄像头实时检测连接USB 摄像头实现实时监测。✅参数实时调节置信度和IoU阈值图片检测该功能允许用户通过单张图片进行目标检测。输入一张图片后YOLO模型会实时分析图像识别出其中的目标并在图像中框出检测到的目标输出带有目标框的图像。视频检测视频检测功能允许用户将视频文件作为输入。YOLO模型将逐帧分析视频并在每一帧中标记出检测到的目标。最终结果可以是带有目标框的视频文件或实时展示适用于视频监控和分析等场景。摄像头实时检测该功能支持通过连接摄像头进行实时目标检测。YOLO模型能够在摄像头拍摄的实时视频流中进行目标检测实时识别并显示检测结果。此功能非常适用于安防监控、无人驾驶、智能交通等应用提供即时反馈。核心特点高精度基于YOLO模型提供精确的目标检测能力适用于不同类型的图像和视频。实时性特别优化的算法使得实时目标检测成为可能无论是在视频还是摄像头实时检测中响应速度都非常快。批量处理支持高效的批量图像和视频处理适合大规模数据分析。三、数据集介绍数据集概述数据集共包含1,803张图像按功能划分为训练集1,563张、验证集140张和测试集100张。数据内容覆盖多种光照条件、角度及遮挡场景标注包含上述三个类别注重头盔与骑手的关联性以及车牌的清晰度。数据规模虽有限但通过增强和优化标注策略仍可有效支撑模型学习局部特征与上下文关系为实际应用提供基础数据保障。数据集配置文件数据集采用YOLO格式的配置文件主要包含以下内容train: \骑手佩戴头盔检测数据集\train\images val:\骑手佩戴头盔检测数据集\valid\images test: \骑手佩戴头盔检测数据集\test\images nc: 3 names: [helmet, license_plate, motorcyclist]四、项目环境配置创建虚拟环境首先新建一个Anaconda环境每个项目用不同的环境这样项目中所用的依赖包互不干扰。终端输入conda create -n yolov8 python3.9激活虚拟环境conda activate yolov8安装cpu版本pytorchpip install torch torchvision torchaudiopycharm中配置anaconda安装所需要库pip install -r requirements.txt五、模型训练训练代码from ultralytics import YOLO model_path yolov8s.pt data_path datasets/data.yaml if __name__ __main__: model YOLO(model_path) results model.train(datadata_path, epochs500, batch64, device0, workers0, projectruns/detect, nameexp, )根据实际情况更换模型 yolov8n.yaml (nano)轻量化模型适合嵌入式设备速度快但精度略低。 yolov8s.yaml (small)小模型适合实时任务。 yolov8m.yaml (medium)中等大小模型兼顾速度和精度。 yolov8b.yaml (base)基本版模型适合大部分应用场景。 yolov8l.yaml (large)大型模型适合对精度要求高的任务。--batch 64每批次64张图像。--epochs 500训练500轮。--datasets/data.yaml数据集配置文件。--weights yolov8s.pt初始化模型权重yolov8s.pt是预训练的轻量级YOLO模型。训练结果六、核心代码from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt, QTimer from PyQt5.QtGui import QImage, QPixmap, QIcon from PyQt5.QtWidgets import (QFileDialog, QMessageBox, QTableWidgetItem, QStyledItemDelegate, QHeaderView) import cv2 import numpy as np from ultralytics import YOLO import os import datetime import sys class CenteredDelegate(QStyledItemDelegate): def initStyleOption(self, option, index): super().initStyleOption(option, index) option.displayAlignment Qt.AlignCenter class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(MainWindow) MainWindow.resize(1400, 900) MainWindow.setWindowTitle(YOLOv8 目标检测系统) # 设置窗口图标 if hasattr(sys, _MEIPASS): icon_path os.path.join(sys._MEIPASS, icon.ico) else: icon_path icon.ico if os.path.exists(icon_path): MainWindow.setWindowIcon(QIcon(icon_path)) self.centralwidget QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName(centralwidget) # 主布局 self.main_layout QtWidgets.QHBoxLayout(self.centralwidget) self.main_layout.setContentsMargins(10, 10, 10, 10) self.main_layout.setSpacing(15) # 左侧布局 (图像显示) self.left_layout QtWidgets.QVBoxLayout() self.left_layout.setSpacing(15) # 原始图像组 self.original_group QtWidgets.QGroupBox(原始图像) self.original_group.setMinimumHeight(400) self.original_img_label QtWidgets.QLabel() self.original_img_label.setAlignment(QtCore.Qt.AlignCenter) self.original_img_label.setText(等待加载图像...) self.original_img_label.setStyleSheet(background-color: #F0F0F0; border: 1px solid #CCCCCC;) original_layout QtWidgets.QVBoxLayout() original_layout.addWidget(self.original_img_label) self.original_group.setLayout(original_layout) self.left_layout.addWidget(self.original_group) # 检测结果图像组 self.result_group QtWidgets.QGroupBox(检测结果) self.result_group.setMinimumHeight(400) self.result_img_label QtWidgets.QLabel() self.result_img_label.setAlignment(QtCore.Qt.AlignCenter) self.result_img_label.setText(检测结果将显示在这里) self.result_img_label.setStyleSheet(background-color: #F0F0F0; border: 1px solid #CCCCCC;) result_layout QtWidgets.QVBoxLayout() result_layout.addWidget(self.result_img_label) self.result_group.setLayout(result_layout) self.left_layout.addWidget(self.result_group) self.main_layout.addLayout(self.left_layout, stretch3) # 右侧布局 (控制面板) self.right_layout QtWidgets.QVBoxLayout() self.right_layout.setSpacing(15) # 模型选择组 self.model_group QtWidgets.QGroupBox(模型设置) self.model_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.model_layout QtWidgets.QVBoxLayout() # 模型选择 self.model_combo QtWidgets.QComboBox() self.model_combo.addItems([best.pt]) self.model_combo.setCurrentIndex(0) # 加载模型按钮 self.load_model_btn QtWidgets.QPushButton( 加载模型) self.load_model_btn.setIcon(QIcon.fromTheme(document-open)) self.load_model_btn.setStyleSheet( QPushButton { padding: 8px; background-color: #4CAF50; color: white; border-radius: 4px; } QPushButton:hover { background-color: #45a049; } ) self.model_layout.addWidget(self.model_combo) self.model_layout.addWidget(self.load_model_btn) self.model_group.setLayout(self.model_layout) self.right_layout.addWidget(self.model_group) # 参数设置组 self.param_group QtWidgets.QGroupBox(检测参数) self.param_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.param_layout QtWidgets.QFormLayout() self.param_layout.setLabelAlignment(Qt.AlignLeft) self.param_layout.setFormAlignment(Qt.AlignLeft) self.param_layout.setVerticalSpacing(15) # 置信度滑块 self.conf_slider QtWidgets.QSlider(Qt.Horizontal) self.conf_slider.setRange(1, 99) self.conf_slider.setValue(25) self.conf_value QtWidgets.QLabel(0.25) self.conf_value.setAlignment(Qt.AlignCenter) self.conf_value.setStyleSheet(font-weight: bold; color: #2196F3;) # IoU滑块 self.iou_slider QtWidgets.QSlider(Qt.Horizontal) self.iou_slider.setRange(1, 99) self.iou_slider.setValue(45) self.iou_value QtWidgets.QLabel(0.45) self.iou_value.setAlignment(Qt.AlignCenter) self.iou_value.setStyleSheet(font-weight: bold; color: #2196F3;) self.param_layout.addRow(置信度阈值:, self.conf_slider) self.param_layout.addRow(当前值:, self.conf_value) self.param_layout.addRow(QtWidgets.QLabel()) # 空行 self.param_layout.addRow(IoU阈值:, self.iou_slider) self.param_layout.addRow(当前值:, self.iou_value) self.param_group.setLayout(self.param_layout) self.right_layout.addWidget(self.param_group) # 功能按钮组 self.func_group QtWidgets.QGroupBox(检测功能) self.func_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.func_layout QtWidgets.QVBoxLayout() self.func_layout.setSpacing(10) # 图片检测按钮 self.image_btn QtWidgets.QPushButton( 图片检测) self.image_btn.setIcon(QIcon.fromTheme(image-x-generic)) # 视频检测按钮 self.video_btn QtWidgets.QPushButton( 视频检测) self.video_btn.setIcon(QIcon.fromTheme(video-x-generic)) # 摄像头检测按钮 self.camera_btn QtWidgets.QPushButton( 摄像头检测) self.camera_btn.setIcon(QIcon.fromTheme(camera-web)) # 停止检测按钮 self.stop_btn QtWidgets.QPushButton( 停止检测) self.stop_btn.setIcon(QIcon.fromTheme(process-stop)) self.stop_btn.setEnabled(False) # 保存结果按钮 self.save_btn QtWidgets.QPushButton( 保存结果) self.save_btn.setIcon(QIcon.fromTheme(document-save)) self.save_btn.setEnabled(False) # 设置按钮样式 button_style QPushButton { padding: 10px; background-color: #2196F3; color: white; border: none; border-radius: 4px; text-align: left; } QPushButton:hover { background-color: #0b7dda; } QPushButton:disabled { background-color: #cccccc; } for btn in [self.image_btn, self.video_btn, self.camera_btn, self.stop_btn, self.save_btn]: btn.setStyleSheet(button_style) self.func_layout.addWidget(btn) self.func_group.setLayout(self.func_layout) self.right_layout.addWidget(self.func_group) # 检测结果表格组 self.table_group QtWidgets.QGroupBox(检测结果详情) self.table_group.setStyleSheet(QGroupBox { font-weight: bold; }) self.table_layout QtWidgets.QVBoxLayout() self.result_table QtWidgets.QTableWidget() self.result_table.setColumnCount(4) self.result_table.setHorizontalHeaderLabels([类别, 置信度, 左上坐标, 右下坐标]) self.result_table.horizontalHeader().setSectionResizeMode(QHeaderView.Stretch) self.result_table.verticalHeader().setVisible(False) self.result_table.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.result_table.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) # 设置表格样式 self.result_table.setStyleSheet( QTableWidget { border: 1px solid #e0e0e0; alternate-background-color: #f5f5f5; } QHeaderView::section { background-color: #2196F3; color: white; padding: 5px; border: none; } QTableWidget::item { padding: 5px; } ) # 设置居中代理 delegate CenteredDelegate(self.result_table) self.result_table.setItemDelegate(delegate) self.table_layout.addWidget(self.result_table) self.table_group.setLayout(self.table_layout) self.right_layout.addWidget(self.table_group, stretch1) self.main_layout.addLayout(self.right_layout, stretch1) MainWindow.setCentralWidget(self.centralwidget) # 状态栏 self.statusbar QtWidgets.QStatusBar(MainWindow) self.statusbar.setStyleSheet(QStatusBar { border-top: 1px solid #c0c0c0; }) MainWindow.setStatusBar(self.statusbar) # 初始化变量 self.model None self.cap None self.timer QTimer() self.is_camera_running False self.current_image None self.current_result None self.video_writer None self.output_path output # 创建输出目录 if not os.path.exists(self.output_path): os.makedirs(self.output_path) # 连接信号槽 self.load_model_btn.clicked.connect(self.load_model) self.image_btn.clicked.connect(self.detect_image) self.video_btn.clicked.connect(self.detect_video) self.camera_btn.clicked.connect(self.detect_camera) self.stop_btn.clicked.connect(self.stop_detection) self.save_btn.clicked.connect(self.save_result) self.conf_slider.valueChanged.connect(self.update_conf_value) self.iou_slider.valueChanged.connect(self.update_iou_value) self.timer.timeout.connect(self.update_camera_frame) # 设置全局样式 self.set_style() def set_style(self): style QMainWindow { background-color: #f5f5f5; } QGroupBox { border: 1px solid #e0e0e0; border-radius: 5px; margin-top: 10px; padding-top: 15px; } QGroupBox::title { subcontrol-origin: margin; left: 10px; padding: 0 3px; } QLabel { color: #333333; } QComboBox { padding: 5px; border: 1px solid #cccccc; border-radius: 3px; } QSlider::groove:horizontal { height: 6px; background: #e0e0e0; border-radius: 3px; } QSlider::handle:horizontal { width: 16px; height: 16px; margin: -5px 0; background: #2196F3; border-radius: 8px; } QSlider::sub-page:horizontal { background: #2196F3; border-radius: 3px; } self.centralwidget.setStyleSheet(style) def load_model(self): model_name self.model_combo.currentText().split( )[0] try: self.model YOLO(model_name) self.statusbar.showMessage(f模型 {model_name} 加载成功, 3000) self.image_btn.setEnabled(True) self.video_btn.setEnabled(True) self.camera_btn.setEnabled(True) except Exception as e: QMessageBox.critical(None, 错误, f模型加载失败: {str(e)}) def update_conf_value(self): conf self.conf_slider.value() / 100 self.conf_value.setText(f{conf:.2f}) def update_iou_value(self): iou self.iou_slider.value() / 100 self.iou_value.setText(f{iou:.2f}) def detect_image(self): if self.model is None: QMessageBox.warning(None, 警告, 请先加载模型) return file_path, _ QFileDialog.getOpenFileName( None, 选择图片, , 图片文件 (*.jpg *.jpeg *.png *.bmp);;所有文件 (*) ) if file_path: try: # 读取图片 img cv2.imread(file_path) img cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 显示原始图片 self.display_image(img, self.original_img_label) self.current_image img.copy() # 检测图片 conf self.conf_slider.value() / 100 iou self.iou_slider.value() / 100 self.statusbar.showMessage(正在检测图片...) QtWidgets.QApplication.processEvents() # 更新UI results self.model.predict(img, confconf, iouiou) result_img results[0].plot() # 显示检测结果 self.display_image(result_img, self.result_img_label) self.current_result result_img.copy() # 更新结果表格 self.update_result_table(results[0]) self.save_btn.setEnabled(True) self.statusbar.showMessage(f图片检测完成: {os.path.basename(file_path)}, 3000) except Exception as e: QMessageBox.critical(None, 错误, f图片检测失败: {str(e)}) self.statusbar.showMessage(图片检测失败, 3000) def detect_video(self): if self.model is None: QMessageBox.warning(None, 警告, 请先加载模型) return file_path, _ QFileDialog.getOpenFileName( None, 选择视频, , 视频文件 (*.mp4 *.avi *.mov *.mkv);;所有文件 (*) ) if file_path: try: self.cap cv2.VideoCapture(file_path) if not self.cap.isOpened(): raise Exception(无法打开视频文件) # 获取视频信息 fps self.cap.get(cv2.CAP_PROP_FPS) width int(self.cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height int(self.cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建视频写入器 timestamp datetime.datetime.now().strftime(%Y%m%d_%H%M%S) output_file os.path.join(self.output_path, foutput_{timestamp}.mp4) fourcc cv2.VideoWriter_fourcc(*mp4v) self.video_writer cv2.VideoWriter(output_file, fourcc, fps, (width, height)) # 启用停止按钮禁用其他按钮 self.stop_btn.setEnabled(True) self.save_btn.setEnabled(True) self.image_btn.setEnabled(False) self.video_btn.setEnabled(False) self.camera_btn.setEnabled(False) # 开始处理视频 self.timer.start(30) # 30ms间隔 self.statusbar.showMessage(f正在处理视频: {os.path.basename(file_path)}...) except Exception as e: QMessageBox.critical(None, 错误, f视频检测失败: {str(e)}) self.statusbar.showMessage(视频检测失败, 3000)七、项目源码(视频简介内)演示与介绍视频基于深度学习YOLOv8的骑手佩戴头盔检测系统YOLOv8YOLO数据集UI界面Python项目源码模型_哔哩哔哩_bilibili基于深度学习YOLOv8的骑手佩戴头盔检测系统YOLOv8YOLO数据集UI界面Python项目源码模型